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A photothermal radiometry technique is being developed at the NPL with the
goal of improving the accuracy of thermal diffusivity measurements. The prin-
ciple is to perform a laser-induced thermal experiment while simultaneously
making accurate measurements of the experimental boundary conditions.
A numerical three-dimensional heat diffusion model based on thermal transfer
functions has been developed to account for the measured boundary conditions.
The thermal diffusivity is determined from the experimental data by a nonlinear,
least-squares fit to the model. Experiments carried out on pure metals at 900 K
demonstrate good agreement between the theoretical predictions and experi-
mental data, and uncertainties of about 1.5% for the thermal diffusivities of
platinum, titanium, and germanium were obtained.
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1. INTRODUCTION

Photothermal techniques are being developed at the NPL for the simulta-
neous measurement of temperature [1] and thermophysical properties such
as emissivity, thermal diffusivity, and thermal conductivity. This paper
describes the results of recent investigations directed particularly at
improving the accuracy of thermal diffusivity measurements. Well-estab-
lished techniques for the determination of the thermal diffusivity of solids



such as the flash technique [2, 3] or thermal wave techniques [4] often rely
on simplified geometries and ideal boundary conditions used a priori in a
mathematical model. Systematic errors inevitably occur because of exper-
imental deviations from initial assumptions [4]. In the most widely used
technique, the laser-flash technique, a uniform one-dimensional excitation
and a simple temporal pulse shape are assumed [2, 3]. Pulsed laser beams
are in essence difficult to measure, and the desired characteristics are not
always met. This may partly explain why the uncertainties reported for
thermal diffusivity values are rarely better than a few percent, even with
high purity materials.

We propose a new methodology, based on photothermal infrared
radiometry [5], to measure the thermal diffusivity of materials with better
accuracy. The principle is to detect a laser-induced thermal radiance signal
while simultaneously making accurate measurements of the boundary
conditions of the heat conduction problem. In the case of a sufficiently
large sample opaque at the pump wavelength, the only boundary condi-
tions are the laser beam profile at the surface and the time dependence of
the incident intensity.

The excitation of the sample is achieved using a periodically scanned
continuous-wave laser beam. By absorption of a fraction of the incident
light, a periodic temperature field is induced which, in turn, is responsible
for a modulation of the thermal radiance emitted by the stimulated surface.
Visible and infrared optical detection is performed in the time domain to
measure the modulated thermal radiance and the back-scattered laser light.
The modulated thermal radiance is proportional to a local average of the
induced temperature field whereas the back-scattered signal gives the time
dependence of the incident laser intensity. The beam profile is accurately
measured using a beam-analyzing device consisting of a scanning slit
attached to the moving mirror of a Michelson interferometer. The experi-
mental setup is more precisely described in Section 2.

The theoretical waveform of the periodic temperature field is given
by a linear relationship between the thermal source term and a heat dif-
fusion operator. Fourier analysis of the heat conduction problem shows
that the latter behaves as a low-pass filter whose cut-off frequency
depends on the thermal diffusivity. Section 3 presents the mathematical
model used to solve this three-dimensional time-dependent heat conduc-
tion problem.

The thermal diffusivity is determined from the experimental data sets
by a nonlinear least-squares fit to the model. The algorithm is presented in
Section 4.

Experimental data on platinum, titanium, germanium, and copper
heated to 900 K in air are presented and discussed in Section 5.
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2. EXPERIMENTAL SETUP

A schematic of the photothermal setup is shown in Fig. 1. The
sample’s front surface is optically excited by an argon ion laser beam deli-
vering a maximum power of 2 W at 514.5 nm. A laser scanner, driven by a
programmable function generator, is used to periodically scan the beam
across the sample surface. A CaF2 plano-convex doublet forms an image of
a fixed point of the surface onto two optical detectors. The doublet is used
in 1 to 1 imaging ratio and has a numerical aperture of about 0.1. The
optical signal is the superimposition of the back-scattered laser light and
the thermal radiance emitted by the sample surface. A long-wave-pass
germanium beamsplitter is used to transmit wavelengths greater than
1.85 mm towards an InSb infrared detector (dimensions 0.1 mm × 0.1 mm)
and to reflect shorter wavelengths towards a silicon detector which has a
suppressed infrared sensitivity. The infrared thermal radiance is filtered
using a narrow bandwidth interference filter centred at 4.05 mm. A narrow
bandwidth detection has the advantage of minimizing the effect of chro-
matic aberrations induced by the collecting lenses.

When a square wave is used to drive the scanner, the beam is periodi-
cally deflected on and off the targeted spot, producing a chopped laser
excitation. Unlike an optical chopper, the laser scanner can be operated
reproducibly at very low frequencies with a short time step (< 10 ms).

After preamplification, both the back-scattered signal and the thermal
radiance signal are digitized using a 16 bit A/D card. The data acquisition

Fig. 1. Photothermal radiometry setup.
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is triggered by a 100 kHz clock signal generated by a frequency multiplier
from the low-frequency signal that drives the laser scanner. This synchro-
nous sampling allows averaging of the signal over a great number of
periods without significant drift or waveform distortion. The averaging
process is realized in real time by an infinite impulse response digital filter
implemented with LabView. The laser scanner driving signal is usually a
10 Hz square wave, and typically the sampled sets of back-scattered and
thermal radiance data consist of N=10000 points.

During this data acquisition, a small fraction of the excitation laser
beam is sampled using a polarizing beamsplitter cube and sent to a beam
analyzing device. In order to measure the beam profile at the position of
the sample surface, the beamsplitter is placed at identical optical path
lengths from the sample and the beam analyzer.

The beam analyzer (Fig. 2) is a scanning slit whose displacement is
monitored by a Michelson interferometer. A large area silicon photodiode
placed behind a 10 mm wide slit is mounted on a motorized translation
stage together with one of the interferometer mirrors. Using a 5 mW HeNe
laser source, the movement of the assembly produces highly contrasted
sinusoidal interference fringes which are detected by another silicon pho-
todiode. Each fringe corresponds to a displacement equal to half a wave-
length of the HeNe laser, i.e., Dx=0.3164 mm. An electronic trigger circuit
generates a reference TTL signal from the fringe signal. Both the reference

Fig. 2. Beam analyzer device.
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signal and the scanning slit signal are fed in an A/D card, and a LabView
program is used to acquire one sample for every 10 fringes detected,
equivalent to a slit displacement of 3.164 mm. The accuracy of the beam
profile measurement is assessed by fitting a Gaussian profile to the data.
The uncertainty on the beam diameter is typically 0.2%.

3. MATHEMATICAL MODELING

With a laser spot with a diameter of about 2 mm and a scanning
frequency greater than a few tenths of Hertz, the thermal perturbation is
confined within a volume of about 1 mm3 for most materials. Therefore,
the heat conduction problem solved for a semi-infinite medium is appro-
priate.

Let us assume a periodically modulated laser beam incident on the
surface of an opaque semi-infinite homogeneous material. The absorbed
laser light is converted into heat which diffuses in the material. In the case
of a chopped-like modulation, the source term of the thermal problem can
be expressed as the product of a spatial term and a temporal term:

q(x, y, z, t)=f(x, y) d(z) h(t) (1)

where f(x,y) is the beam profile, d is the Dirac distribution, and h(t) is the
time dependence of the laser intensity. The temperature field T(x, y, z, t)
in the material is the solution of the three-dimensional heat conduction
problem defined by the following differential system [6]:

N2T=
1
D

“T
“t

(2a)

T(x, y, z, t)]t=0=0 (2b)

K
“T
“z
6

z=0
=−q(x, y, z, t) (2c)

T(x, y, z, t)]z Q .=0 (2d)

T(x, y, z, t)]x Q .=0 and
“T(x, y, z, t)

“x
6

x Q .

=0 (2e)

T(x, y, z, t)]y Q .=0 and
“T(x, y, z, t)

“y
6

y Q .

=0 (2f )
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K and D are, respectively, the thermal conductivity and the thermal diffu-
sivity of the material. h(t), a periodic function with a frequency c, can be
expanded in a Fourier series:

h(t)= C
n=+.

n=−.

h̃ne2ipnct (3)

where h̃n is the nth component of the Fourier spectrum of h(t). After a
transient regime, a periodic regime is established in the material. The tem-
perature field can therefore be Fourier expanded:

T(x, y, z, t)= C
n=+.

n=−.

T̃n(x, y, z) e2ipnct (4)

The terms T̃n are the components of the Fourier spectrum of T(x, y, z, t).
Replacing T by its Fourier expansion in Eqs. (2) leads to a differential
system for each component T̃n:

N2T̃n=
2ipnc

D
T̃n (5a)

K
“T̃n

“z
6

z=0
=−f(x, y) h̃n (5b)

T̃n(x, y, z)]z Q .=0 (5c)

T̃n(x, y, z)]x Q .=0 and
“T̃n

“x
6

x Q .

=0 (5d)

T̃n(x, y, z)]y Q .=0 and
“T̃n

“y
6

y Q .

=0 (5e)

Let ṽn(ux, uy, z) be the two-dimensional spatial Fourier transform of
T̃n(x, y, z) with respect to x and y:

ṽn(ux, uy, z)=F
+.

−.

F
+.

−.

T̃n(x, y, z) e−2ip(ux x+uy y) dx dy (6)

The spatial frequencies ux and uy form a continuum in the real space
because of the unbounded conditions, Eqs. (5d) and (5e) [7]. Replacing T̃n

by its Fourier decomposition leads to a one-dimensional differential system
for ṽn as a function of the space variable z:
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[(2ipu2
x)+(2ipu2

y)] ṽn+
d2ṽn

dz2 =
2ipc

D
ṽn (7a)

K
dṽn

dz
6

z=0
=−f̃(ux, uy) h̃n (7b)

ṽn(ux, uy, z)]z Q .=0 (7c)

where f̃(ux, uy) is the Fourier transform of the beam profile.
The solution of the differential system defined by Eqs. (7), expressed at

z=0, is

ṽn(ux, uy, z)=
`D

K

f̃(ux, uy) h̃n

`2ipnc+4p2D(u2
x+u2

y)
(8)

Equation (8) shows that the surface temperature in the Fourier domain is
the algebraic product of the beam profile Fourier component f̃(ux, uy) by
the Fourier component of the laser intensity time dependence h̃n and by a
thermal transfer function Hn(ux, uy) defined by

Hn(ux, uy)=
`D

K

1

`2ipnc+4p2D(u2
x+u2

y)
(9)

The surface temperature field in the Fourier domain can be seen as the
result of a linear filter H acting on two input functions f̃ and h̃n:

ṽn(ux, uy, z=0)=Hn(ux, uy) f̃(ux, uy) h̃n (10)

In the experimental setup, a photodetector of dimensions xd and yd is used
to detect the thermal radiance emitted by the surface in a small spectral
band centred around the detection wavelength. In the limit of small laser
heating, the signal S(t) induced by the laser periodic heating is proportio-
nal to the periodic surface temperature, averaged on the detection zone.
The proportionality factor, which includes the local emissivity, the first
derivative of the Planck function, the numerical aperture of the optics, and
the instrumental gain, is omitted for clarity:

S(t)=
1

xd yd
F

xd/2

−xd/2
F

yd/2

−yd/2
T(x, y, z=0, t) dx dy (11)

S(t) is also a periodic function and, therefore, can be expressed as a
Fourier series with coefficients S̃n. According to Eq. (11), S̃n is given by

S̃n=
1

xd yd
F

xd/2

−xd/2
F

yd/2

−yd/2
T̃n(x, y, z=0) dx dy (12)
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After replacing T̃n by its two-dimensional Fourier expansion and perform-
ing the double integration over x and y, Eq. (12) becomes

S̃n=F
+.

−.

F
+.

+.

ṽn(ux, uy, z=0) sinc(pxd ux) sinc(pyd uy) dux duy (13)

where sinc(x)=sin(x)/x. Let us define the detector transfer function
T(ux, uy):

T(ux, uy)=sinc(pxdux) sinc(pyduy) (14)

The Fourier components S̃n of the periodic signal can now be expressed as

S̃n=h̃n F
+.

−.

F
+.

+.

Hn(ux, uy) T(ux, uy) f̃(ux, uy) dux duy (15)

Assuming a rotational symmetry of the laser beam, Eq. (15) becomes

S̃n=h̃n F
+.

−.

F
+.

−.

Hn(ux, uy) T(ux, uy) f̃(ux) f̃(uy) dux duy (16)

The periodic signal S(t) is given by the following Fourier series:

S(t)= C
.+

n=−.

S̃ne2ipnct (17)

The numerical implementation of the model was done using
MATLAB. The Fourier spectra f̃ and h̃n are computed using the fast
Fourier transform algorithm (FFT) applied to the beam profile and the
backscattered light data. The double integral in Eq. (16) is approximated
by a double sum over the positive spatial frequencies. S(t) is computed
according to Eq. (17) by inverse FFT. The computation of a set of 10000
values of S(t) takes about 10 s on a 350 MHz PC.

3. PARAMETER ESTIMATION AND MEASUREMENT
UNCERTAINTY

Although the temperature and the photothermal signal are given by
linear relationships, the model described in Section 2 is not linear with
respect to the thermal diffusivity. This parameter must be therefore deter-
mined by a nonlinear parameter estimation procedure aiming to fit the
model to the thermal radiance data. Assuming Gaussian white noise with
zero-mean and uniform variance, the least-squares technique provides
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minimal variance estimators [8]. In order to avoid any bias, the experi-
mental data are not normalized. Instead, instrumental parameters (offset,
gain, and arbitrary time origin) are estimated together with the diffusivity
in the form of a four-parameter vector m t=(D, offset, gain, origin). The
Gauss–Newton iterative algorithm is chosen to perform the minimization
of the least-squares cost function. In this technique, the first partial deriva-
tives of the model with respect to the parameters are needed to compute the
N × 4 Jacobian matrix G of the problem:

Gij=1“S(t)
“mj

2
t=ti

(18)

The partial derivative with respect to the diffusivity is approximated by a
finite-difference technique. Since the data depend linearly on the instru-
mental parameters, the computation of the corresponding partial derivati-
ves is straightforward [8].

This parameter estimation problem is well-conditioned and the algo-
rithm usually converges after 3 or 4 iterations when realistic initial values
are used. An estimate ŝ2 of the variance of the noise is given by:

ŝ2=
1

N − 4
C
N

i=1
(Sexp(ti) − Stheo(ti))2 (19)

where Sexp(ti) and Stheo(ti) are, respectively, the measured and the fitted
theoretical data.

There are three contributions to the uncertainty of the estimated
parameters: the noise in the thermal radiance data, the error in the mea-
surement of the beam profile, and the error in the measurement of the laser
intensity time dependence. Because of the very good accuracy in the mea-
surements of the beam profile and the laser intensity time dependence, their
contributions are negligible compared to the thermal radiance noise, which
is essentially due to the background photon noise. The uncertainty of the
estimated parameters is therefore derived from the fitting residuals only.
The covariance matrix Cm of the estimated parameters is computed using
the linear least-squares theory:

Cm=ŝ2(G tG)−1 (20)

where G is evaluated using the optimal values of the parameters. The
thermal diffusivity measurement uncertainty is given by the square root of
the first diagonal element of Cm multiplied by a coverage factor of 2. This
coverage factor is derived, under the Gaussian noise hypothesis, from the
Student distribution with a number of degrees of freedom of N − 4, typi-
cally 9996, and a confidence level of 95% [8].

Measurement of the Thermal Diffusivity of Solids 1179



4. EXPERIMENTAL RESULTS

The thermal diffusivities of platinum, germanium, titanium, and
copper have been measured. Each sample was placed in a tube furnace and
heated in air to 900 K. In the case of titanium and copper, an oxide layer
formed on the surface. The sample temperature was controlled by a
sheathed Type K thermocouple positioned 5 mm below the sample front
surface. The accuracy of the temperature measurement was about ± 2 K,
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Fig. 3. Boundary conditions measured for the analysis of platinum. (a) Beam profile. (b)
Laser intensity time dependence. The inset shows the finite rise time of the laser excitation
(’ 0.2 ms).
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a range in which no significant variation of the thermal diffusivity was
expected for the samples under investigation. A beam diameter of about
2 mm and a scanning frequency of 10 Hz were used. The measured
boundary conditions for the platinum sample are shown in Fig. 3. The
laser power was set at about 100 mW in order to minimize nonlinear effects
in the thermal radiance signal. A temperature perturbation of about 2 K
was induced in the samples. To compensate for the very low corresponding
infrared signal level, a large number of periods, typically 1000, were
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Fig. 4. Thermal radiance signal measured for platinum. (a) Experimental data (noisy
signal) and best fit (continuous line). (b) Data residuals after fitting.
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Table I. Experimental Results on the Thermal Diffusivity of Pure Metals

This work Literature [9]
• thermal diffusivity • thermal diffusivity
• standard deviation • uncertainty

Purity T • 95% conf. interval • conf. interval
Material (mass%) (K) Surface state (m2 · s−1) (m2 · s−1)

platinum 99.99 900 polished D=2.56 × 10−5 D=2.46 × 10−5

no oxide layer s=2 × 10−7 ± 8%
[2.52; 2.60] × 10−5 [2.3; 2.7] × 10−5

titanium 99.6 800 polished D=6.43 × 10−6 D=6.99 × 10−6

transparent oxide s=4 × 10−8 ± 10%
layer [6.35; 6.51] × 10−6 [6.3; 7.7] × 10−5

germanium 99.999 900 unpolished D=8.70 × 10−6 D=9.00 × 10−6

no oxide layer s=7 × 10−8 ± 13%
[8.56; 8.84] × 10−6 [7.8; 10.2] × 10−6

copper unknown 900 polished D=8.9 × 10−5 D=9.35 × 10−5

black oxide layer s=2 × 10−6 ± 6%
[8.5; 9.3] × 10−5 [8.8; 9.9] × 10−5

averaged according to the procedure described in Section 2. The thermal
radiance signal measured on platinum and the best fit are shown in Fig. 4.
Table I presents the results obtained with the set of samples. The thermal
diffusivities of platinum, titanium, and germanium were measured with
an uncertainty of about ± 1.5%, calculated according to the procedure
described in Section 3. These results are in good agreement with literature
values [9]. Platinum, germanium, and titanium gave excellent agreement
between experimental data and theoretical predictions. The histogram of
the fitting residuals revealed a nearly perfect Gaussian distribution, which
validates the Gaussian noise hypothesis used for expressing the measure-
ment uncertainties. In contrast, the data collected with copper showed
residual peaks after the fitting procedure. In this case, the homogeneous
model for the sample is almost certainly not appropriate because of the
thick black oxide layer formed at high temperature in air.

5. CONCLUSIONS

By accurately measuring the boundary conditions associated with a
laser-based thermal experiment, it has been demonstrated that the thermal
diffusivity of solids can be measured with an uncertainty of about ± 1.5%.
The results presented in this work concerned platinum, titanium, germa-
nium, and copper. Although the uncertainties of the literature values are
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not generally as good, they agree well with our measurements. However,
the data obtained with copper showed that the technique does not give very
good results when the surface oxidizes too much. A further validation of
the technique would consist in measuring the thermal diffusivity of a very
high purity sample in a controlled atmosphere as a function of temperature.

Using the linear system theory, it is theoretically possible to perform
the measurement of the thermal diffusivity by adaptive filtering. Such a
filter could be implemented on a digital electronic circuit allowing the
experimental setup to determine the thermal diffusivity in real time.
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